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EXISTENCE AND UNIQUENESS THEOREM FOR SOLUTIONS OF DYNAMIC PROBLEMS OF 
THE NONLINEAR THEORY OF ELASTICITY* 

V. G. VIL'KE 

The kernel of the elastic strain potential energy functional depends on the finite 

strain tensor invariants, while the functional itself is represented as a finite 

sum of homogeneous functionals of the displacement and is defined in the Sobolev 

space (WJ (Q)ls (P > 2) /1,2/. A number of inequalities is set up which the strain 

potential energy functional and its Frechet derivatives satisfy, and an existence 

and uniqueness theorem is proved for generalized solutions of dynamic problems of 

the nonlinear theory of elasticity in the phase space (L,(Q))3 x (W,l(Q))r(Z<~<~). 

Existence and uniqueness theorems were considered earlier for the solutions of 

dynamic problems of linear small-strain elasticity theory /3/ and of a class of 

nonlinear problems /4/. 

1. Properties of the potential elastic strain energy functional. We give 

the potential strain energy functional in the form 

E [u] = 16, III;, III,c)dx (dx=dzl dxqdxx), e(IE,IIs,IIInj= i +(w), 20= (1Ln, Um, . . .; U:rs)E R9 (1.1) 

51 h-=z 

au. 
q,=* 7 

Vi,i=1,2,3, Et[W]= e,(zu)dx, 
s 

x=(xr.x2,Xa) E QC R3 
, IZ 

Here Q is the domain occupied by the body in the natural unstrained state, IE, IIn, IIIr are 

finite strain tensor invariants, u(x,t) is the displacement vector, eh (w) are homogeneous 

functions of order k 

Ch (to) = 2 a,w’, Oh (VW) = p%k (w), p ER’, 1; = 2, .( p, 1 = (II, . .( 19), IL+ = /P1~ w,:s, 
,,,A 

1 1 1 = i; li. (1.2) 
i--I 

where li are nonnegative integers, and al = ai,,. ,i, are constants. 

The functional (1.1) has the form mentioned in the case of a homogeneous isotropicmedium. 

For an inhomogeneous, nonisotropic medium the coefficients Q in (1.2) depend on the point x 

and the orientation of the principal strain axes relative to the axes coupled to the medium. 

All the results obtained below for homogeneous and isotropic media will be validinthegeneral 

case if the coefficients Q(X) have upper and lower bounds in &. 

The domain of definitionofthe functional (1.1) is the Sobolev space ,(M~~'(~))3 with the 

norm 

,,I+,,:-& ll~4,o-t i I/d'.o)l'p~ Ilfll::,o=~lfl"a.r 
1=, i,i=1 

Theorem 1. The functional (1.1) is bounded in (W,l (Q))3. 
The proof of Theorem 1 is based on using the Holder inequality for several functions and 

estimates resulting from the theorem for embedding L,into &I for I l I< p PI. 
Let 

G= {u:u===y+(O--)x, u,y~R~, 0~S0(3)) 

be a rotational-displacement group in R3, and let the conditions 

E [u] = U :g u E G; u $ G-I? [u] T 0 (1.3) 

be valid, which mean that the strain energy is zero for displacements of an elastic body as 

a solid, and positive in all the remaining cases. It follows that pis even from the second 
condition in (1.3). 

Lemma 1. The polynomial 

f',, (10 =,/,, W'. g E IjY (1.4) 

cannot take on negative values. 

If it is assumed that P,,(y,) = c<O for y: vO, then for y r- py, we obtain 
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It iS Clear that for sufficiently large p the functional E[yy,]can be made negative, 
which contradicts (1.3). 

Lemma 2. Let the system of equations 

P, (y) = 0, grad, P, (y) = 0 (1.5) 

have no solutions. Then the functional E,,Iul is positive definite 

E,, [ul zz cl /I UJ ll;,o, v w E (L, (Q))g (1.6) 

By virtue of the homogeneity of the polynomial JJ,, (Y) 8 to prove the lemma it is suffic- 
ient to prove the inequality 

P,(Y)> Cl 5 Yil'S y E .s, = y : h yip :- 1 
i’ 1 

(1.7) 
*=1 1-1 

Since the sphere S, is compact in S!', then the polynomial Pp(y) takes a minimum value 

thereon. If the minimum of P,, is positive in S,, then (1.7) is proved. The minimum of the 

polynomial cannot be negative according to Lemma 1. There remains to examine the case when 
the minimum is zero. Since P,, (~1 is a differentiable function, then the vector grad PI,(y) 
at the minimum point should equal zero (its projection on the tangent hyperplane to S, vanish- 

es, and the projection on the normal to S, equals zero since the polynomial remains zero 

along the normal because of homogeneity). The contradiction to conditions (1.5) proves the 

lemma. 

Theorem 2. If the functional (1.1) (p is even) satisfies conditions (1.3) and (1.5), 

then there exist constants A ‘> 0, c2> 0 and the following inequality is valid 

E [ul ‘2 cz // w li:;, o, (1 w !I,, I, ; iv- (l-8) 

We have 
E [IO] = 1"" (E, [d] ‘j: p”-“EL I.u~~]} , p := I/ w lip ,,, 7P zzz p” 

It follows from Theorem 1 that the homogeneous functionals 

IQ+= s e,(w)dx 
$1 

are bounded in (w,1(Q))3. This means that for sufficiently large p (p > N)the following esti- 

mate will be valid n--l 

and furthermore, we obtain on the basis of (1.6) 

which indeed proves (1.8)'. 

Lemma 3. The gradient of the homogeneous functional Eb [WI satisfies the inequality 

Remark. The functional k‘h-]~] can be examined either in the space (~,,l(Q))a or the 

space (&(R))z (in this case we shall write Eh. [IO]). Depending on this, the gradient'Ek will be- 

long to the conjugate spaces VEh. ]u] E (lYi,.~* (0))" and VF,,, Ii!.] E (I'/<. (Q)Y , and the normsof the 

gradients are connected by the relationship 

11 CEb Iwl 111,1, o 1> Ii r/:'r. 1111 II,, , -I 
Proof of Lemma 3. According to (1.1) we have 

Here the vector m ~ 1 (i) has the coordinates In,,. ., rui 1, n!,). Since 

then 

VI:‘,, [iI] I;,,” i 2 ](j,,lj,, I’,‘!/” 1 , ,,‘“‘-“‘““‘(dl (1.10) 
1 ,‘!I, II 

The integral in (1.10) is estimated by using the Hslder inequality for several functions /5/ 
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We use the inequality 

and obtain the estimate 

from which (1.9) follows with 

9 
M, = x 2 9kIornmilk' 

i=, ,m,=h- 

Theorem 3. The gradient of the functional (1.1) satisfies the inequality 

II VE Iwl II:, o < ~J'I II w II&o + N, II w II;, ot + + $ = 1, iv1 > 0, Iv, > 0 (1.11) 

By using the embedding theorem L, c Lk (k <p) , and the resulting inequality II 2 Ilk. 0 < 

ch- II z IIP, 0 t as well as Lemma 3, we arrive at the estimate 

Let us note that k lk’= k - 1 and the following inequality is true 

( 5 CkMkyq ,< N& + N,y@-lkl 
k=2 

for certain poisitive N,, N,, from which the assertion of the theorem follows. 

Corollary. The inequality 

11 VE Id Ilq,o < N,' II w IIp,o + Nz’ II w Ilp”;: 
follows from the inequality (l.ll), where N,‘, N,’ are certain positive constants. 

Theorem 4. The Lipschitz condition 

II 
is valid for the gradient of 

L(h) is a constant dependent 
The proof of Theorem 4 

Lemma 4. The second 

equality 

VE [w"l - VE [w'l /Iq,o < L (h) II w" - UJ' Ilp,o (1.12) 

the functional (1.1) if I/ w' llP,,,< h, II w" 1(1',~ < h (h> 0), where 

only on h and the domain of integration $2. 

is based on two lemmas. 

Frkhet derivative of the functional Ek [WI satisfies the in- 

Lemma 5. The second Frechet derivative of the functionalE [wlsatisfies the inequal- 

ity 
/I v2 E [WI 11~ \( G, + G, II ~7 Ii;::, G, > 0, G, > o 

The proofs of these lemmas are analogous to the proof of Lemma 3 and Theorem 3. 

To prove Theorem 4 we consider the function 

~(.t)=(VE[w’~z(w”-w’)],u), (VE(w],u)=~&$$ii& 
1=1 

According to Lemma 5, its derivative satisfies the inequality 

d Wd z = (Vz E Iw’ -t z (w” - to’)] (w” - w’), u) < L (h) II w” - ui’ lip, u 11 v lIpI o (1.13) 

if /I W" llij. o < h, II W’ lip, o < 1~ and L(h)= G, + G,P*. Integrating (1.13) with respect to a be- 

tween zero and one, we arrive at the inequality 

Furthermore 

Q.E.D. 

(TE [ul"l - 'CE Iw'l, u) < L (h) II W" - 1L" Ii,,,<, // u /1,',0 

// Y'E [w"l - YE [m'l I/,,," = ,,spp (VE [w”] - VE [w’]. I:) *< L (h) // wv- w’I!p,o 
,‘,“=ml 

2. Existence theorem for the solutions. The D'Alembert-Lagrange variational 

principle of the dynamical elasticity theory problem has the form /4/ 

(II*. -1. YE [u] - C, 60) - (F, 6~)~ = 0, V6u E V (2.1) 

Here I', F are the mass and surface forces, and r = dR is a differentiable manifold of dim- 

ensionality two satisfying the cone condition /5/. The elastic body is assumed homogeneous 
and isotropic with unit density. 
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The surface forces axe given on a part of the boundary 1‘~ and the displacements lJ (x, t) 
on a part of the boundary ra, and r=ri- L) rr. ri i!rfr= :?. The domain of definition of the 
functional Elulis the Sobolev space (~~~,I(~~)):~. Then the traces of the function u (x, t) on I' 
belongtothe space of traces (BF"p(I'))R, where &l(r) is the space of Besov that agrees with 
the Sobolev space for noninteger 1 /5/. It hence follows that the displacement u (s, t) F 
(B;? (r))s . and according to the theorem about traces, there exists a function u0 (x, 1) on 51 
that belongs to (WP1(Q))3 and satisfies the inequality 

I( uo l/p, 1 < d, II XJ* IIP, 1-1 i P, 1% G 44 II U l/p, 1-1 s p-r. (d, > 0, d, > (1) (2.21 

where U* is the continuation of U on all of I', and // - jjp,l_Ifp.~ is the norm in (B;-1'" (I‘)) 3 
151. The constants d,, d, are independent of the functions in the inequality (2.2), and the 
boundary ra on rfone-dimensional curve) satisfies the cone condition /5/. 

The linear manifold VC (Wpt(Q))‘, where 

v = {v : v E (Wpl (Q))3, v IQ = 0) 
is the configuration space of the mechanical system and the substitution II="@ -I- 1' reduces 
(2.1) to the form 

(v" + VE [u, + v] -f,, Sv) - (F, Sv), = 0, A8v EV, f, == f - u"~ 12.3) 

We speak below about the existence and uniqueness of solutions of the variational problem 
(2.3) in the phase space of the system H x V with the initial conditions 

v(X,O)~U(X,O)-uUg(X,O)EV, v' (x, 0) = (2.4) 
II' (x, 0) - u'~ (x, 0) E? H, H = {v’ : V-E (L,(Q)) 3, V’ IF,,-0} 

Let us consider a certain time segment 10, T1 and let us assume that 

f(x, t) E L, (0, 2'; (L, (Q))3), F (x, t) E- L, (0, T; (W;!z (J.‘)) “) (2.5) 

Conditions (2.5) constrain the intensity of the mass and surface forces in the time segment 

IO, Tl 
(f, v’) < /I f II.‘,0 II v Ill,” % ’ K, II V’ll?, 0 , (F, v’)r < II F I!.‘, 1 1, r // \.. 112, L/A, r < K&II \.‘ 11~ 

(2.6) 
KI = -2” II f llz,o. KZ = vrai max jl F jlz, ,,>, p, 

O<,ifgT II v' I/~--L:;. I‘ < 4s II v’ ho 

The last inequality in (2.6) follows from the theorem on the traces of functions on a manifold 

151. Furthermore, let 

U, tJ E (1~‘:,-““(1’))9, 11 ci Ilp,I-l/p,r& ah7 II ~‘I/P.I-lirJ, i”‘, .-J Bs (2.7) 

U” E civ;“~ W)), II U” 112, _‘,A, r < Bs, v1 E IO, Tl (2.8) 

In combination with inequality (2.2) the conditions (2.7) assure the continuation of U. t-. on 
the whole manifold r and the estimates 

11 ug lip, I 2:; MB,, II uo’ /lp, I < d,d,B, 
It follows from condition (2.8) that u,"E: (L.L(Q))3 and 

12.9) 

Theorem. Letahomogeneousisotropicelasticmediumoccupy adomain St with smooth bound- 
ary I' in the natural state, let the potential of the elastic forces be given by (l.l), let 
the external forces and displacements on parts of the boundary satisfy the conditions (2.5), 
(2.7), (2.81, then (2.3) has the following solution 

'I' (x, t) E L, (0; T; C.), v‘ (x. t) E L,= (0, I'; H) (2.11) 

for the initial conditions (2.4). The proof of the theorem consists of the following fund- 
amental steps: construction of approximate solutions by the Galerkin method, proof of their 
boundedness and proof of the fact that the limit function satisfies (2.3) and the initial 
conditions (2.4) 141. 

Construction of the approximate solutions. Let (q~h}& be an orthogonal basis 
in Nsatisfying the conditions 'pl (x)= v (x, O)/ // v (x, 0) ll,,,l, II (~hjl~,, = 1. This is possible since 
the space W,,* (Q)(p> 2) is embedded in L, (Q) and compact therein. Let us define the approx- 
imate solution v(I')(x, t) as a solution of the equation 

(~"0") -i_ VE [u,, -1. v(")I - f,, 6v) - (F, Sv), = 0, V6v cs 1"") (2.12) 

that satisfies the initial conditions Y('Q (x, 0) = v (x, 0), v'(") (x, 0) = P,fiv' (s, 0). where P, is 
the projection operator of H(“) in H. The spaces V(n) and I$(n) are linear spans of the 
vectors (cpr)tz,, with the norms W,,land L,,, respectively. 
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Using the represent-ation 
v(") (% t) = i; %(t)%(x) 

s=, 

and setting 6v=qT (x) (r = 1,. . .,a) into (2.121, we obtain a system of 2n ordinary different- 
ial equations equivalent to (2.12) 

& =P~~II CP~II~~~, pm = (Dm(qlnr . . . , h, t), r=l, . . . , II (2.13) 

%,=/I cpt- IlZ,"o [(fo--VE lug i +'I> VT! + (F, q:,!rJ 

We estimate the right sides of (2.13) in the norms f,,, and L,, respectively, we use the 
inequality (1.121, and we arrive at the deduction that the Lipschitz condition with constant 
2 (n, h)=mal (1, nL (h)) (min /I cp, II?,O)-' is satisfied for them if II D (v(@' -I- uo) Ilp,o < h and 

10; n 
/I D (v("Y + UJ Ill>. " < h. 
The operator Ddenotes partial. derivatives taken with respect to all the variables and the 
vector Dv(“) E (LP (R))“. According to (2.91, these conditions will be satisfied if 

V,n)' I , v(“) ES,, = {d”): II v(n) )),‘, , < 0 = h - d,d,B,) 

Taking account of the corollary from Theorem 3 and the inequalities (2.6), (2.91, (2.10), 
the right sides of (2.13) satisfy the inequality 

under the condition that 

By the existence and uniqueness theorem for solutions, the system (2.13) has a unique 
solution in the time interval /6/ 

Tl('ri = min (2-l (n, h), (h - d,$B, - a,) AP-' (n, /&)I, 0, = II v' (XT 81 l/2,0 -I- il v (r, 0) l/P. 1 

Let us note that T1(n)-+ 0 as n+ m. 

Boundedness of the solutions. We replace 6v in (2.12) by v'("Jand we integrate 
the equality obtained between 0 and t 

+ jl y.(n) I$$ + E jufi + v(*)]= I?$'+ f [(FE [uo + @f], uo') + (fo, vq + (2.141 

(F, v’“‘)~] dz, L:“’ = -+ II v.(“) (x, 0) II& + E [ uo ( XI, ‘3 + & @I< + II v’ (x, 0) It,, + E Lua (xv 0) -I- v (x, ‘J)l = .b 
Estimating the right side of (2.14) by using the inequalities (2.6)-(2.10) and (1.111, we 
arrive at the inequality 

We examine two cases. Let j] D (~0 + ~(“‘1 I$, o < N, then O< E [u, $ v(")f<.& according to 
Theorem 1, and (2.15) is converted into the inequality 

L, = 2 IL, (T) _t A,NV + A,NPTI 

On the basis of the Grenouilli inequality /3/ 

I( v'(n) 112",0 < L, exp PA&) 

When 11 D (U, + v*(")) [!P,O > iv, according to Theorem 2 (the inequality (1.8)) 

f II vCn) Ii& + czz < LZ (T)+ {(AI-q/P -L A+ i_ A3 /I V,(R) &)d~,, 2 = II D h, + ~(‘9 II!, o 
0 

(2.16) 

(2.17) 

Since q i p < 1, and z> IV?', then x4/?'< Apz. If we use the notation min (‘is, c.J = c8. max (A& + 
A,, A3) = A,, )/ v‘(“) ii;, o + z = y, then we obtain from (2.17) 

CSY (t) < b(T) -I- A, fy(r)dr 
0 

and according to the Grenouille inequality 

Y (t) < cz-% (T) ax!? (%-'A& 

The boundedness of , II v@) )j2,,, follows from the boundedness of II ~'@)ll~,~ since /3/ 

(2.18) 
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II dn) Ilk3 < 2 II v (x, 0) II;,0 + c4 f I/ v.(n) Il&dT (c4 > 0) (2.19) 
0 

On the other hand, on the basis of the miltiplicative inequality /5/ 

II v(*) IIP. 0 < c5 (II dn) ll2,o + II Dv(“) lip. 0) cc5 > 0) (2.20) 

Combining the results (2.16), (2.18)- (2.20), we arrive at the deduction that there exist 

Q>O and a> 0 and the following estimate is valid 

/I v'(") 112,o + II v(") lIPi 1 < @al 
(2.21) 

The constants Q and a in the inequality (2.21) are independent of the number IZ. 

As has been shown above, the solution of the system (2.13) exists in the time segment 

lo, T1(")l. Let us examine the question of continuation of the solution in the time segment 

LO, Tl. If 
a2 =z /I v*@) (x, Tl(")) II 2,0 j j/ vcn) (x, TIC")) lip, 1 < Ii - d,d,B, 

then the solution can be continued in the segment ]Tl("), Tz(")], where 

T,(") - TIC") = min (Z-l(n, h), (12. - $,d,B, - up) &P1 (n, h)) 

The process of continuing the solution can be repeated until h - d,d,B, - ali becomes neg- 

ative. Taking account of the growth estimate (2.21), we arrive at the deduction that the 

solution will exist in the time segment ]U, T'l , where T'satisfies the equality 
h - d,d,B, - Q esp (UT’) = 0 

Selecting h sufficiently large (this selects the domain in the system phase space), the 

existence of the solution can be assured in the segment IO. T] for any number n. All the 

solutions (v'(n), v(*)) of the system (2.13) are bounded in the space L, (0, T; H x V). 

Convergence of the successive approximations. We use the property of bounded 

sequences in functional spaces: Out of all the bounded sequences in a reflective Banach 

space, a weakly convergent subsequence can be selected /7/: 

(v'('0, +L)) -_t (\.', v) weakly in L, (0, T; II j: I’) 

Here n runs through a certain subsequence of natural numbers. 

It is shown by a method analogous to that mentioned in /4/ that the limit function satis- 

fies equation (2.3) and the initial conditions (2.4), and the equation 

\." + YE lu, + v] == @,, (Q, I#) = (f,, Q) -;m (F, $)r, V$ E 1' 

is understood in the sense of distributions in the segment [O, T] with values in I.', a space 

conjugate to the configuration space V. 

3. Uniqueness of the solutions. We formulate two theorems establishing the unique- 

ness of the solutions. 

Theorem (stationary case). Let the solution v of equation (2.3) be such that 

u= u0 ml- Y is independent of the time, and the functional E 1111 is convex. 

E ]u + Avl - E lul - (VE [ul, Ar) > p II Av I\;,l, (B > 0, II Av IL.,< 4, h, > 0) (3.1) 

Then this solution is unique. 

Remark. Condition (3.1) can be replaced by a condition on the second Frechet variation 

of the functional li: lw] 

/I w - u lip, 1 < h, C/L, > ‘3, WE Iwl Av, 11) > 26 /I Av I[;,, , (3.2) 
Conditions (3.1) and (3.2) are conditions for local convexity of the functional Elul. 
The proof of the theorem is analogous to that indicated in /4/. 

Theorem (dynamic case). If the functionalE [ulsatisfies the condition (3.1) and 

V-EL, (0, T; V), then the solution v (x. t) of the variational equation (2.3) is unique. 

The following lemma is used to prove this theorem: The thirdFrechetdifferentia1 of the 

functional E [ulsatisfies the condition 

(PE ]u:J (~1. Q), ~3) < (D, + D, /j LC Ii;:;:) I/ z1 /ID.‘, !/ z2 jl,,,o x jj 23 ](,',I, , w, zi E CL,, @)I” (i = 1, 2, 3 c3e3) 
where D,, D, are positive constants. 

Proof of the lemma is analogous to the proof of Lemma 3 and Theorem 3. Then for U' z 

D (ug -1. v) 

and subsequent proof of the theorem is carried out by the scheme to prove the uniquenss theor- 

em in the dynamic case in /4/. 
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